Sebeshev V.G., Gerber Yu.A.

UDC 624.04:519.2

VLADIMIR G. SEBESHEV, PhD, Professor,

sebeshev@sibstrin.ru

YURIY A. GERBER, Engineer,

jura.gerber@rambler.ru

Novosibirsk State University of Architecture and Civil Engineering,

113, Leningradskaya Str., 630008, Novosibirsk, Russia

STRUCTURAL  ANALYSIS  OF  RANDOM  PARAMETERS  UNDER  HARMONIC  LOADS

According to the reliability problem definition for damper-protected structures from vibrations, the influence of basic structural parameters on deformable systems and the finite number of degree of freedom was evaluated in this paper. The analysis of failure probability sensitivity to variable characteristics of protected structure, the damper and dynamic load were established, i.e. the load amplitude and frequency, mass and stiffness of the damper elastic element. Quantitative results of reliability design analysis of the beam system with two degrees of freedom are presented herein that confirm the conclusion drawn by the authors. The data analysis allows formulation of requirements for the accuracy of project parameters implementation to provide the appropriate reliability.

Keywords: reliability; failure probability; finite number of degree of freedom; harmonic load; vibration damper; resonance; dynamic factor.

References

  1. Lyakhovich L.S. Osobye svoistva optimal’nykh sistem i osnovnye napravleniya ikh realizatsii v metodakh raschyota sooruzhenii [Special properties of optimal systems and their structural design]. Tomsk : TSUAB Publ., 2009. 372 p. (rus)
  2. Korenev B.G., Reznikov L.M. Dinamicheskiye gasiteli kolebanii: Teoriya i tekhnicheskiye prilozheniya[Dynamic vibration dampers: Theory and engineering applications]. Moscow : Nauka Publ., 1988. 304 p. (rus)
  3. Dukart A.V. Zadachi teorii udarnykh gasiteley kolebanii [Problems of the impact dampers of vibrations theory]. Moscow : ASV Publ., 2006. 205 p. (rus)
  4. Osamu N., Toshihiko A. Closed-form solutions to the exact optimizations of dynamics vibration absorbers (minimizations of the maximum amplitude magnification factors). Journal of Vibration and Acoustics. Transactions of the American Society of Mechanical Engineers, 2002. V. 124. No. 4.Рp. 576–582.
  5. Sebeshev V.G. Dinamika deformiruemykh sistem s konechnym chislom stepeney svobody mass [Dynamics of deformable systems with the finite number of degree of freedom]. Novosibirsk : SIBSTRIN Publ., 2011. 227 p. (rus)
  6. Pochtman Yu.M., Khariton L.Ye. Optimal’noye proektorovaniye konstruktsii c uchyotom nadyozhnosti [Optimum reliability design analysis]. Stroit. mekh. i raschet sooruzhenii. 1976. No. 6. Pp. 8–15. (rus)
  7. Vrouwenvelder T. Treatment of risk and reliability in the Eurocodes. Proceedings of the Institution of Civil Engineers, Structures and Buildings, 2008. V. 161. No. SB4. Pp. 209–214.
  8. Hang E.J., Choi K.K., Komkov V. Design Sensitivity Analysis of Structural Systems. Mathematics in Science and Engineering. New York : Academic Press, 1986. V. 17. 426 p.
  9. Sebeshev V.G. Osobennosti raboty staticheski neopredelimykh sistem i regulirovanie usilii v kostruktsiyakh [Behavior of statically indeterminate systems and internal force control]. Novosibirsk : SIBSTRIN Publ., 2009. 164 p. (rus)
  10. Sebeshev V.G., Gerber Yu.A. Otsenka nadyozhnosti i dolgovechnosti po usloviyu ustalostnoi prochnosti sterzhnevykh sistem s dinamicheskim gasitelem kolebanii pri garmonicheskikh vozdeistviyakh [Reliability and fatigue life evaluation of bar systems with vibration damper at harmonic loads]. Proc. All-Rus. Conf. ‘Problems of Optimal Design of Structures’, Novosibirsk : SIBSTRIN Publ., 2014. Pp. 367–380. (rus)
  11. Rzhanitsyn A.R. Teoriya rascheta stroitel’nykh konstruktsii na nadyozhnost’ [Theory of reliability design analysis]. Moscow : Stroyizdat Publ., 1978. 239 p.(rus)

Full text | (194 Кб)