Lukashevich V.N., Lukashevich O.D., Harii R.I.

UDC 625.731.824

VIKTOR N. LUKASHEVICH, DSc, Professor,

lukvin@tsuab.ru

OLGA D. LUKASHEVICH, DSc, Professor,

odluk@yandex.ru

RUSLAN I. KHARII, Research Assistant,

ruslan7102@sibmail.com

Tomsk State University of Architecture and Building,

2, Solyanaya Sq., 634003, Tomsk, Russia

A  MODEL  OF  FRACTALS  FOR  CEMENT-BASED  FIBER-REINFORCED  PAVEMENT  BASE  COURSE

A model of reinforcing structures consisting of discontinuous chemical fibers has been designed using the fractal theory for base course reinforcement made of inorganic cement. Computer-based modelling of reinforcing structure formation has allowed drawing a conclusion that a prerequisite for synthesis of the equivalent fiber-reinforced base course is a percolation transition point which indicates that the fiber units of the reinforcement material were dispersed throughout the pertinent space.

Key words: base course reinforcement; fiber reinforcement; crack resistance; fractal; cluster; percolation.

References

  1. Grigolyuk, E.I., Fil'shtinskii, L.A. Periodicheskie kusochno-odnorodnye uprugie struktury [Periodic sectionally uniform elastic structures]. Moscow: Nauka, 1992. 288 p. (rus)
  2. Lukashevich, V.N., Malinovskii, A.V., Noskov, M.D. Perkolyatsionnaya model' strukturoobrazovaniya armirovannykh voloknami asfal'tobetonnykh smesei [Percolation model of structure formation of fiber-reinforced asphalt mixes]. Proc. Int. Conf. ‘All-Siberian lectures on mathematics and mechanics’. I.B. Bogoryad, A.M. Bubenchikov, editors. Tomsk: TSU Publishing House, 1997. V. 2. Pp. 210–211. (rus)
  3. Noskov, M.D., Lukashevich, V.N., Filichev, S.A. Dispersnoe armirovanie asfal'tobetonnykh smesei i fraktaly [Fiber-reinforcement and fractals of asphalt mixes]. Vestnik fonda podderzhki vuzovskoi i otraslevoi dorozhnoi nauki. Omsk, 1995. No. 2. Pp. 120–123. (rus)
  4. Feder, E. Fraktaly [Fractals]. Moscow : Mir, 1991. 254 p. (rus)
  5. Balbery, I., Binenbaum, N. Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks. Phys. Rev. B, 1983. V. 28. Pp. 3799–3812.
  6. Mandelbot, B.B. The Fractal Geometry of Natur. New-York : Freeman, 1982. 468 p.
  7. Stoffer, D. Scaling theory of percolation clusters. Phys. Rev. 1979. V. 54. Pp. 1–74.

Full text | (399 Кб)