Kabantsev O.V.

UDC 624.042.1: 539.3+693.157

OLEG V. KABANTSEV, PhD, Professor,

ovk531@gmail.com

Moscow State University of Civil Engineering,

26, Yaroslavskoe Road, 129337, Moscow, Russia

DISCRETE MODEL OF MASONRY UNDER BIAXIAL STRESSES

The paper presents a discrete model of masonry based on destruction mechanisms deduced from experiments and developed considering the contact interaction between base materials using interface elements introduced into the model. The proposed system of masonry strength criteria corresponds to biaxial stress state conditions, while design technology allows considering the structural modification of the model. Verification of the modeling technique and design technology is based on comparison of experimental results that allow the determination of the key role of elements providing the interaction of base materials during the elastoplastic deformation of masonry.

The suggested discrete model of masonry and design technology cane be used in detailed examination of elastoplastic properties of piecewise homogeneous composites.

Keywords: modelling; numerical methods; design model; stress-strain state; masonry; brick; mortar.

References

  1. Kabantsev O. Modeling nonlinear deformation and destruction masonry under biaxial stresses. Part. 1. Masonry as simulation object. Applied Mechanics and Materials. 2015. 725–726. Pp. 681–696.
  2. Kabantsev O. Modeling nonlinear deformation and destruction masonry under biaxial stresses. Part 2. Strength criteria and numerical experiment. Applied Mechanics and Materials. 2015. 725–726. Pp. 808–819.
  3. Kashevarova G.G., Trufanov N.A. Chislennyi analiz effektivnykh uprugikh svoistv materiala kirpichnoi kladki [Numerical analysis of effective elastic properties of masonry]. Journal on Composite Mechanics and Design, 2005. V. 11. No. 1. Pp. 49–60. (rus)
  4. Pangaev V.V. Model'nye issledovaniya napryazhenno-deformirovannogo sostoyaniya kamennoi kladki pri szhatii [Model studies of the stress-strain state of the masonry in compression]. News of Higher Educational Institutions.Construction. 2003. No. 2. Pp. 24–29. (rus)
  5. Page A.W. A non-linear analysis of the composite action of masonry walls on beams. Proc. Inst. Civ. Eng. 1979. V. 67. Pp. 93–100.
  6. Lemos J.V. Discrete Element modeling of masonry structures. International Journal of Architectural Heritage. 2007. No. 1. Pp. 190–213.
  7. Gabor A., Bennani A., Jacquelin E., Lebon F. Modelling approaches of the in-plane shear behavior of unreinforced and FRP strengthened masonry. Composite Structures, 2006. No. 74. Pp. 277–288.
  8. Lourenco P.B. Computational strategies for masonry structures. PhD Thesis. Delft University of Technology. Delft. The Netherlands. 1996.
  9. Geniev G.A. O kriterii prochnosti kamennoi kladki pri ploskom napriazhennom sostoianii [Strength criteria of masonry with plane stress state]. Stroit. mekh. i raschet sooruzhenii. 1979. No. 2. Pp. 7–11. (rus)
  10. Kabantsev O.V. Chastnyye kriterii prochnosti kamennoy kladki dlya analiza uprugo-plasticheskogo deformirovaniya [Partial criteria of masonry strength for elastoplastic deformation]. Seismostoikoe stroitelstvo. Bezopasnost sooruzhenii. 2013. No 3. Pp. 36–41. (rus)
  11. Onishchik L.I. Kamennye konstruktcii promyshlennykh i grazhdanskikh zdanii [Stone construction of industrial and civil buildings]. Moscow ; Leningrad : Gosizdatelstvo stroitelnoi literatury, 1939. 208 p. (rus)
  12. Tonkikh G.P., Kabantsev O.V., Koshayev V.V. Metodika eksperimentalnykh issledovaniy po usileniyu zdaniy iz kamennoy kladki zhelezobetonnymi applikatsiyami [Experimental research methodology for masonry building strengthening with concrete applications]. Seismostoikoe stroitelstvo. Bezopasnost sooruzhenii. 2005. No. 6. Pp. 63–65. (rus)
  13. Kopanitsa D.G., Kabantsev O.V., Useinov E.S. Eksperimentalnye issledovaniia fragmentov kirpichnoi kladki na deistvie staticheskoi i dinamicheskoi nagruzki [Experimental research of masonry fragments under static and dynamic loads]. Vestnik TSUAB. 2012. No. 4. Pp. 157–178. (rus)
  14. Tonkikh G.P., Kabantcev O.V., Simakov O.A., Simakov A.B., Baev S.M., Panfilov P.S. Eksperimentalnye issledovaniia seismousileniia kamennoi kladki naruzhnymi betonnymi applikatciiami [Experimental research seismic reinforcement of masonry by exterior concrete applications]. Seismostoikoe stroitelstvo. Bezopasnost sooruzhenii. 2011. No. 2. Pp. 35–42. (rus)
  15. Karpilovskiy V.S., Kriksunov E.Z., Malyarenko A.A., Mikitarenko M.A., Perelmuter A.V., Perelmuter M.A. SCAD office. Versiya 21. Vychislitelnyy kompleks SCAD++ [SCAD office. Edition 21. System SCAD++]. Moscow : SCAD SOFT, ASV Publ., 2015. 808 p. (rus)
  16. Vildeman V.E., Sokolkin Iu.V., Tashkinov A.A. Mekhanika neuprugogo deformirovaniia i razrusheniia kompozitcionnykh materialov. Pod red. Iu.V. Sokolkina [Mechanics of inelastic deformation and destruction composite materials]. Moscow : Nauka Publ., Fizmatlit Publ., 1997. 228 p. (rus)
  17. Perelmuter A.V., Slivker V.I. Raschetnyie modeli sooruzheniy i vozmozhnost ih analiza [Design models of structures and their analysis]. Moscow : SKADSOFT, ASV, DMK Press. 2011. 709 p. (rus).
  18. Kabantsev O.V., Tamrazyan A.G. Uchet izmeneniy raschetnoy skhemy pri analize raboty konstruktsii [Structural behavior analysis considering changes in design model]. Magazine of Civil Engineering. 2014. No. 5. Pp. 15–26. (rus)
  19. Burago N.G. Modelirovanie razrusheniia uprugoplasticheskikh tel [Destruction model of elastoplastic bodies]. Computational Continuum Mechanics. 2008. V. 1. No. 4. Pp. 5–20. (rus).
  20. Iliushin A.A. Mekhanika sploshnoi sredy [Mechanics of Continual]. MSU Publ., 1978. 287 p. (rus)
  21. Kabantsev O.V., Perelmuter A.V. Uchet izmeneniya zhestkostei elementov v protsesse montazha i ekspluatatsii [Element stiffness change during mounting and operation]. Magazine of Civil Engineering. 2015. No. 1. Pp. 6–14. (rus)
  22. Sergeev N.D. Raschet staticheski neopredelimyh sistem pri ih mnogokratnoy posledovatelnoy modifikacii [Calculation of statically indeterminate systems with their multiple sequential modification]. Stroit. mekh. i raschet sooruzhenii. 1975. No. 6. Pp. 11–16. (rus)
  23. Mazhid K.I. Optimal'noe proektirovanie konstruktsii [Optimum structural design]. Moscow : Vysshaya Shkola Publ., 1979. 237 p. (rus)
  24. Küpfer H.B. Das nicht-lineare Verhalten des Betons bei zweiachsiger Beanspruchung. Beton und Stallhbetonbau. 1973. No. 11. Pp. 269–273.
  25. Sousa R., Sousa H., Guedes J. Diagonal compressive strength of masonry samples – experimental and numerical approach. Materials and Structures. 2013. No. 46. Pp. 765–786.
  26. Polyakov S.V., Safargaliyev S.M. Monolitnost kamennoy kladki [Monolithic masonry]. Alma-Ata, 1991. 160 p. (rus)
  27. Fattal S., Jokel F. Failure hypothesis for masonry shear walls. Proceedings of ASCE. 1976. V. 102. No. ST3. Pp. 515–532.
  28. Schubert P., Bohene D. Schubfestigkeit von Mauerwerk aus Leichtbetonsteinen. Das Mauerwerk Heft 3, Ernst & John, 2002. Pp. 98–102.
  29. Capozucca R. Shear behavior of historic masonry made of clay bricks. The Open Construction and Building Technology Journal. 2011. No. 5. (Suppl. 1-M6). Pp. 89–96.

Full text | (734 Кб)