Kabantsev O.V.

UDC 624.042.1:539.3+693.157

OLEG V. KABANTSEV, PhD, Professor,

ovk531@gmail.com

Moscow State University of Civil Engineering,

26, Yaroslavskoe Road, 129337, Moscow, Russia,

EMIL S. USEINOV, Research Assistant,

useinov_em@mai.ru

Tomsk State University of Architecture and Building,

2, Solyanaya Sq., 634003, Tomsk, Russia

PLASTIC DEFORMATION OF MASONRY UNDER BIAXIAL STRESS AFFECTED BY ADHESIVE STRENGTH BETWEEN BRICK AND MORTAR

The paper presents the failure analysis of masonry structural elements at different levels of adhesive strength between brick and mortar. A method is suggested to define the phase boundary between the elastic and plastic masonry deformation due to the increasing load. The calculation of and rationale for the masonry plastic properties are described for different levels of normal adhesion. The results of numerical analysis allow detecting the influence of adhesive strength on processes of plastic deformation and properties of masonry. Research results can be used to formulate the limit state criteria for the masonry exposed to lateral and seismic loads.

Keywords: modeling; numerical methods; design model; stress-strain state; masonry; brick; mortar.

References

  1. Onishchik L.I. Kamennye konstruktsii promyshlennykh i grazhdanskikh zdanii [Stone structures of industrial and civil buildings]. Moscow : Gosizdat Publ., 1939. 208 p. (rus)
  2. Kopanitsa D.G., Kabantsev O.V., Useinov E.S. Eksperimentalnye issledovaniia fragmentov kirpichnoi kladki na deistvie staticheskoi i dinamicheskoi nagruzki [Experimental research of masonry fragments under static and dynamic loads]. Vestnik TSUAB. 2012. No 4. Pp. 157–178. (rus)
  3. Burago N.G. Modelirovanie razrusheniia uprugoplasticheskikh tel [Modelling of elastoplastic body failure]. Computational Continuum Mechanics. 2008. V. 1. No 4. Pp. 5–20. (rus)
  4. Trusov P.V. Nekotorye voprosy nelineinoi mekhaniki deformiruemogo tverdogo tela (v poriadke obsuzhdeniia) [Problems of nonlinear mechanics of deformed solids]. PNRPU Mechanics Bulletin. 2009. No. 9. Pp. 85–95. (rus)
  5. Kabantsev O.V. Modeling nonlinear deformation and destruction masonry under biaxial stresses. Part 1. Masonry as simulation object. Applied Mechanics and Materials. 2015. 725–726. Pp. 681–696.
  6. Kabantsev O.V. Modeling Nonlinear deformation and destruction masonry under biaxial stresses. Part 2. Strength criteria and numerical experiment. Applied Mechanics and Materials. 2015. 725–726 Pp. 808–819.
  7. Kabantsev O.V. Diskretnaya model' kamennoi kladki v usloviyakh dvukhosnogo napryazhennogo sostoyaniya [Discrete model of masonry under biaxial stress]. Vestnik TSUAB. 2015. No 4. Pp. 113–134. (rus)
  8. Kabantsev O.V., Tamrazyan A.G. Modelirovanie uprugo-plasticheskogo deformirovaniya kamennoi kladki v usloviyakh dvukhosnogo napryazhennogo sostoyaniya [Modeling of elastoplastic deformation of masonry under biaxial stress]. International Journal for Computational Civil and Structural Engineering. 2015. V. 11. No. 3. Pp. 87–100. (rus)
  9. Perelmuter A.V., Slivker V.I. Raschetnyie modeli sooruzheniy i vozmozhnost ih analiza [Design building models and their analysis]. Moscow : SKAD SOFT Publ., ASV Publ., DMK Press. 2011. 709 p. (rus)
  10. Kabantsev O.V., Tamrazyan A.G. Uchet izmeneniy raschetnoy skhemy pri analize raboty konstruktsii [Structural behavior analysis]. Magazine of Civil Engineering. 2014. No 5. Pp. 15–26. (rus).
  11. Kabantsev O.V., Perelmuter A.V. Uchet izmeneniya zhestkostei elementov v protsesse montazha i ekspluatatsii [Stiffness changes in elements during mounting and operation]. Magazine of Civil Engineering. 2015. No 1. Pp. 6–14. (rus)
  12. Tonkikh G.P., Kabantcev O.V., Simako O.A., Simakov A.B., Baev S.M., Panfilov P.S. Eksperimentalnye issledovaniia seismousileniia kamennoi kladki naruzhnymi betonnymi applikatciiami [Experimental research of seismic reinforcement of masonry with external concrete applications]. Seismostoikoe stroitelstvo. Bezopasnost sooruzhenii. 2011. No 2. Pp. 35–42. (rus)
  13. Karpilovskiy V.S., Kriksunov E.Z., Malyarenko A.A., Mikitarenko M.A., Perelmuter A.V., Perelmuter M.A. SCAD Office. Versiya 21. Vychislitelnyy kompleks SCAD++ [SCAD Office 21. SCAD++]. Moscow : SKAD SOFT Publ., 2015. 808 p. (rus)
  14. Sokolov B.S. Teoriya silovogo soprotivleniya anizotropnykh materialov szhatiyu [Compressive force resistance theory of anisotropic materials]. Moscow : ASV Publ., 2011. 160 p. (rus)
  15. Polyakov S.V., Safargaliyev S.M. Monolitnost kamennoy kladki [Masonry solidity]. Alma-Ata : Gylym Publ., 1991. 160 p. (rus)
  16. Popov N.N., Rastorguev B.S. Dinamicheskii raschet zhelezobetonnykh konstruktsii [Dynamic analysis of reinforced concrete structures]. Moscow : Stroyizdat Publ., 1974. 207 p. (rus)
  17. Veletsos A.S. Effect of inelastic behavior on the response of simple systems to earthquake motion. Proc. 2nd World Conf. on Earthquake Engrg. Pp. 895–912.
  18. Schubert P.D., Bohene D. Schubfestigkeit von Mauerwerk aus Leichtbetonsteinen. Das Mauerwerk Heft 3, Ernst & John., 2002. Pp. 98–102.
  19. Capozucca R. Shear behavior of historic masonry made of clay bricks. The Open Construction and Building Technology Journal. 2011. No. 5. (Suppl 1-M6). Pp. 89–96.
  20. Sousa R., Sousa H., Guedes J. Diagonal compressive strength of masonry samples – experimental and numerical approach. Materials and Structures. 2013. No. 46. Pp. 765–786.

Full text | (1.22 Mб)